

(ii) select I = nAev (= 3.0 A)

1 mark for correct formula

C1

$$v = 3.0/8.0 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19}$$

1 mark for correct substitutions into formula

C1

A1

$$= 2.1 \times 10^{-3} \text{ (m s}^{-1})$$

1 mark for correct answer to 2 or more SF

[12]

[6]

[5]

- 2. (a) (i) Electrons in a metal
 - (ii) Ion in an electrolyte

B1 **B**1

(b) **1.** I = Q/t / I = 650/5I = 130 (A)

C1**A**1

2. $n = I/e = 130/1.6 \times 10^{-19}$

C1

 $n = 8.1 \times 1020$

A1

3. $R = R_1 + R_2 / R = 200 + 120 / R = 320$

C1

$$current = \frac{8.0}{320}$$

C1

current = 2.5×10^{-2} (A)

A0

(b) $V = 25 \times 10^{-3} \times 120 / V = \frac{120}{120 + 200} \times 8.0$

V = 3.0 (V)(Possible ecf) **B**1

(c) p.d. across the 360 (Ω) resistor = p.d. across the 120 (Ω) resistor /

There is no current between ${\boldsymbol A}$ and ${\boldsymbol B}$ / in the voltmeter (Allow 'A & B have same voltage' - BOD)

B1

The p.d. calculated across 360 Ω resistor is shown to be 3.0 V /

B1

The ratio of the resistances of the resistors is shown to be the same.

4. (a) Into the page **B**1

(b) $I = \frac{\Delta Q}{\Delta t}$ (Allow other subject, with or without Δ)

C1

(charge =)
$$7800 \times 0.23$$
 C1
 $1.794 \times 10^3 \approx 1.8 \times 10^3$ (C) (Ignore minus sign) A1
 $(1.8 \times 10^6$ (C) scores 2/3)

(c) (number =)
$$\frac{1.79 \times 10^3}{e}$$
 (Possible ecf) C1
(number =) $1.12 \times 10^{22} \approx 1.1 \times 10^{22}$ A1

[6]

5. (a)
$$Q = It$$
 (Allow any subject) C1
$$Q = 0.040 \times 5.0 \times 60 \times 60 \setminus Q = 0.040 \times 1.8 \times 10^{4}$$

$$\text{charge} = 720$$

$$(40 \times 5 = 200 \text{ or } 0.040 \times 5 = 0.02 \text{ or } 40 \times 1.8 \times 10^{4} = 7.2 \times 10^{5} \text{ scores } 1/2)$$

$$\text{coulomb } \setminus C \setminus As$$
B1

(b) It is less because the average current is less \ area (under graph) is less \ current 'drops' after 3 hours.

[4]

[1]

(b)	$\rho = \frac{RA}{L}$ (Allow any subject)	M1
	R = resistance, $L = length$ and $A = (cross-sectional)$ area	A1
	$(\rho = \text{resistivity is given in the question})$	
	Any <u>four</u> from:	
	Measure the length of the wire using a ruler	B1
	Measure the diameter of the wire	B1
	using a micrometer \ vernier (calliper)	B1
	Calculate the (cross-sectional) area using $A=\pi r2\setminus A=\pi d$	2/4 B1
	Calculate the resistance (of the wire) using $R = \frac{V}{I}$	B1
	Repeat experiment for different lengths \ current \ voltage	
	(to get an average)	B1
	Plot a graph of R against L. The gradient = ρ/A .	B1
	(Or Plot V against I. The gradient is $\rho L/A$)	
	Structure and organisation.	B1
	Spelling and grammar.	B1
		[10]

QWC

The answer must involve physics, which attempts to answer the question.

Structure and organisation

Award this mark if the whole answer is well structured.

Spelling and Grammar mark

More than two spelling mistakes or more than two grammatical errors means the SPAG mark is lost.

7. Coulomb / C

(b) (i)
$$I = \frac{12}{8.0}$$
 C1

$$current = 1.5 (A)$$

(ii)
$$P = \frac{V^2}{R}$$
 / $P = IV$ $P = I^2 R$

$$P = \frac{12^2}{8}$$
 / $P = 1.5 \times 12$ $P = 1.5^2 \times 8.0$ (Possible ecf) C1

$$power = 18 (W)$$
 A1

(iii)
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + (\frac{1}{R_3})$$
 / $\frac{1}{R} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$ C1

$$\frac{1}{R} = 3 \times \frac{1}{8}$$
 C1

resistance =
$$2.67 \approx 2.7$$
 (Ω) (Allow answer expressed as 8/3) A1 (0.375 or 3/8 scores 2/3)

(iv) energy =
$$0.018 \times 12 \times 3$$
 C1
energy = $0.648 \approx 0.65$ (kW h) (Possible ecf) A1
(0.22 (kW h) scores 1/2)
(648 (kW h) scores 1/2)
(2.3 × 10⁶ (J) scores 1/2)

- (c) It will be brighter B1
 The current is larger / correct reference to: $P \propto 1 / R$ B1
- 9. The sum of the currents entering a point / junction is equal to the sum of the currents leaving (the same point) Or 'Algebraic sum of currents at a point = 0' B2 (-1 for the omission of 'sum' and -1 for omission of 'point'/ 'junction') (Do not allow $I_1 + I_2 = I_3 + I_4$ unless fully explained)

[2]

[13]